Ensemble Quasi-Newton HMC

Xiao-Yong Jin and James Osborn Argonne National Laboratory

July 23, 2018 The 36th International Symposium on Lattice Field Theory East Lansing, MI

Reduce critical slowing down

- Part of US DOE-funded
 Exascale Computing Project (ECP)
- Support research in lattice QCD to prepare for exascale
- Reducing critical slowing down, lead by Norman Christ, is part of the USQCD's effort in ECP
- See Norman's slides for a list of people actively involved

Outline

- Generate ensemble assisted Markov chains
- Apply Quasi-Newton HMC
- Test on 2D U(1) pure gauge theory (work in progress)

Generate multiple Markov chains

- Can we exchange information between chains?
- Use info from other chains
- Extra info from itself (not explored in this talk)
- Any advantage?

Ensemble assisted Markov chains: in parallel

Embedding Markov chains in Markov chains

Ensemble assisted Markov chains: multi-state

Embedding Markov chains in Markov chains

What kind of information from other chains?

- How do we generate the next state?
- Modify MD evolution
 "Quasi-Newton MCMC" Zhang & Sutton (2011)
 "Ensemble precondition" Matthews et al (2016)
 "Quasi-Newton Langevin" Simsekli et al (2016)
 "Magnetic HMC" Tripuraneni et al (2016)
 "Wormhole" Lan et al (2013)
- Modify Metropolis-Hastings
 "Multi-try" Liu, Liang, and Wong (2000)
- · Other techniques? Machine learning!!!

Quasi-Newton method for HMC Hamiltonian

• BFGS approximation of the Hessian: G's = y Update an old approximation to a new one

$$G' = G + \frac{yy^{\dagger}}{y^{\dagger}s} - \frac{Gss^{\dagger}G}{s^{\dagger}Gs}$$
 $s = \ln U'U^{\dagger}$ step $y = \nabla S(U') - \nabla S(U)$ yield

- Approximate Hessian from configs of other MC Repeatedly apply the update according to $N_{\rm stream}$
- Use the approximate Hessian for the mass matrix

$$H = S(U) + \frac{1}{2}p^{\dagger}G^{-1}p$$

Note: Fourier acceleration≃Local free field Hessian

Quasi-Newton method

 Avoids the slow down of the steepest decent in narrow valleys

- Caveat in the current study:
 - The approximated Hessian is global
 - We do not use the current location

Benefits of rank-2 update (BFGS style)

- Factorizable matrix (Brodlie et al 1973)
 - Initializing random momenta

$$G' = G + ww^{\dagger} - zz^{\dagger} \rightarrow G' = (1 - uv^{\dagger})G(1 - vu^{\dagger})$$

- Exactly invertible
 - MD evolution
 - Computing the kinetic energy

$$G^{'-1} = \left(1 - \frac{vu^{\dagger}}{v^{\dagger}u - 1}\right)G^{-1}\left(1 - \frac{uv^{\dagger}}{v^{\dagger}u - 1}\right)$$

Gauge fixing of 2D U(1) lattice

- Removes exact zero modes from the real Hessian
- Frozen degrees of freedom take the same values
- We choose maximal tree gauge fixing
- · Fix two more non-gauge degree of freedom

Regulate the approximated Hessian matrix

- Remove low modes in the approximate global Hessian
- Add one more term to keep the rank-2 update

$$G' = G + \frac{yy^{\dagger}}{y^{\dagger}s} - \left(1 - \lambda \frac{s^{\dagger}s}{s^{\dagger}Gs}\right) \frac{Gss^{\dagger}G}{s^{\dagger}Gs}$$

- Works in practice, but not a strict bound
- Caveat:
 - Mildly violates G's = y
 - Still no upper bound

Test on 2D U(1) theory (work in progress)

- Fixed $\beta = 5.8$, lattice size 32×32
- Serial version of the ensemble Markov chain
- · Second order Omelyan integrator (did not tune λ)
- Look at the autocorrelation of the topological susceptibility, $\langle Q^2/V\rangle$
- Topological charge, $Q = \frac{1}{2\pi} \sum_{x} \text{Arg} \square_{x}$ Arg : $\mathbb{C} \mapsto (-\pi, \pi)$
- Topological charge is exact integer with periodic boundary conditions

Acceptance tuning

Autocorrelation of topological susceptibility

Autocorrelation of topological susceptibility

Summary & Outlook

- · We devise an algorithm creating multiple Markov chains in parallel Allow exchange of information while generating the Markov chains
- We modify HMC to use information from neighboring Markov chains BFGS approximated Hessian as the mass matrix of the MD Hamiltonian Use a custom regulator for the approximated Hessian for stability
- We still need more tuning and testing (parameters / observables)
- Ways to improve the algorithm
 - Exploit the ensemble of Markov chains (multi-scale?)
 - Other method for constructing the mass matrix
 - Use other information / observables to augment MD / Metropolis
- Machine learning!